已知椭圆x^2/25 + y^9=1,直线l:4x-5y+40=0.椭圆中是否存在一点,它到直线l距离最大?最大距离是?

问题描述:

已知椭圆x^2/25 + y^9=1,直线l:4x-5y+40=0.椭圆中是否存在一点,它到直线l距离最大?最大距离是?

是不是 X的平方/25+Y平方/9=1?
其他方法我就不说了,介绍你一种简便的:
写出与椭圆相切直线的通用公式:X*X!/25+Y*Y!/9=1,其中X!,Y!为交点
斜率与l相同,则得X!/20+Y!/9=1.再代入到椭圆方程,得到交点X!,Y!,再求距离!
注意有两个结果,取最大距离的那个点!