(1-sinx)/2cosx当x趋向n/2时的极限怎么求?请写出具体过程,

问题描述:

(1-sinx)/2cosx当x趋向n/2时的极限怎么求?请写出具体过程,

罗比达法则
lim -cosx/-2sinx=0
x-n/2
(1-sinx)/2cosx
=[1-(1/2)sin(x/2)cos(x/2)]/2[cos^2(x/2)-sin^2(x/2)]
=[cos^2(x/2)+sin^2(x/2)-(1/2)sin(x/2)cos(x/2)]/2[cos^2(x/2)-sin^2(x/2)]
=1+tan^2(x/2)-(1/2)tan(x/2)/2(1-tan^2(x/2))
极限 1/2, 当n = 4Pi +- Pi
极限 (1-sin(n/2))/(2cos(n/2)), 当n 4Pi +- Pi
解 :
没说 n 取向于无穷!
那极限就是 (1-sin(n/2))/(2cos(n/2))
如果 n = 4Pi +- Pi, cos(n/2) = 0, sin(n/2) = 1
此时 可以利用洛必达法则,
lim (1-sinx)/(2cosx)
= lim -cosx/(-2sinx)
= 1/2

答案:
极限 1/2, 当n = 4Pi +- Pi
极限 (1-sin(n/2))/(2cos(n/2)), 当n 4Pi +- Pi
解 :
没说 n 取向于无穷!
那极限就是 (1-sin(n/2))/(2cos(n/2))
如果 n = 4Pi +- Pi, cos(n/2) = 0, sin(n/2) = 1
此时 可以利用洛必达法则,
lim (1-sinx)/(2cosx)
= lim -cosx/(-2sinx)
= 1/2

罗比达法则
lim -cosx/-2sinx=0
x-n/2

(1-sinx)/2cosx
=[1-(1/2)sin(x/2)cos(x/2)]/2[cos^2(x/2)-sin^2(x/2)]
=[cos^2(x/2)+sin^2(x/2)-(1/2)sin(x/2)cos(x/2)]/2[cos^2(x/2)-sin^2(x/2)]
=1+tan^2(x/2)-(1/2)tan(x/2)/2(1-tan^2(x/2))