已知抛物线y=x^2-(k+3)x+2k-1···急!已知抛物线y=x^2-(k+3)x+2k-1.问:设抛物线与x轴交于A,B两点(A在B的左边),顶点为C,C的纵坐标为m,求AB^2/m的值?
问题描述:
已知抛物线y=x^2-(k+3)x+2k-1···急!
已知抛物线y=x^2-(k+3)x+2k-1.
问:设抛物线与x轴交于A,B两点(A在B的左边),顶点为C,C的纵坐标为m,求AB^2/m的值?
答
设A(x1,y1),B(x2,y2),则AB^2=(x2-x1)^2=(x2+x1)^2-4x2x1=(k+3)^2-4(2k-1).又m为抛物线最小值,故m=(4(2k-1)-(k+3)^2)/4.所以AB^2/m = -4.
答
设A(x1,0),B(x2,0)由已知条件可得:C((k+3)/2,m)将点C坐标代入方程得:[(k+3)/2]^2-(k+3)*(k+3)/2+2k-1=m化简得:(k+3)^2-8k+4=-4mAB^2=(x2-x1)^2=(x1+x2)^2-4x1x2=(k+3)^2-4(2k-1)=(k+3)^2-8k+4=-4m所以AB^2/m=-4m...