求方程xyz + x2 + y2 + z2 = 2 确定的函数z = z( x,y)在点(1,0,-1)处的全微分dz,
问题描述:
求方程xyz + x2 + y2 + z2 = 2 确定的函数z = z( x,y)在点(1,0,-1)处的全微分dz,
答
可以采用求偏导数的办法:
xyz + x^2 + y^2 + z^2 = 2两边对x求导得:yz+xy∂z/∂x+2x+2z∂z/∂x=0,代入点
(1,0,-1)得:2-2∂z/∂x=0,∂z/∂x(1,0,-1)=1
xyz + x^2 + y^2 + z^2 = 2两边对y求导得:xz+xy∂z/∂y+2y+2z∂z/∂y=0,代入点(1,0,-1)得:-1-2∂z/∂y=0,∂z/∂y(1,0,-1)=-1/2
dy(1,0,-1)=dx-dy/2