如果以抛物线y2=4x过焦点的弦为直径的圆截y轴所得的弦长为4,那么该圆的方程是______.
问题描述:
如果以抛物线y2=4x过焦点的弦为直径的圆截y轴所得的弦长为4,那么该圆的方程是______.
答
设过焦点的直线与抛物线交点A、B坐标分别为(x1,y1),(x2,y2),圆心C即AB的中点(x0,y0),
由抛物线定义得,|AB|=x1+x2+p=x1+x2+2=2x0+2,∴r=x0+1,
∵圆截y轴所得的弦长为4
∴由勾股定理得,r2=4+x02,即
解得x0=
r=x0+1
r2=4+x02
,3 2
∴r=
,5 2
设过焦点的直线方程为x=ay+1,则
,
x=ay+1
y2=4x
消去x得y2-4ay-4=0,∴y1+y2=4a,即y0=2a
消去y得x2-(2+4a2)x+1=0,∴x1+x2=2+4a2,即x0=1+2a2=
,解得a=±3 2
,1 2
∴y0=2a=±1,所以该圆的方程是(x-
)2+(y±1)2=3 2
,25 4
故答案是(x-
)2+(y±1)2=3 2
.25 4
答案解析:设直线与抛物线的交点坐标(x1,y1),(x2,y2),由抛物线定义可得半径r与圆心(x0,y0)的关系,再由圆截y轴弦长和勾股定理得r与圆心(x0,y0)的关系,从而解得r和x0.再设过焦点的直线方程为x=ay+1,联立抛物线方程,分别消去x,y得到x0、y0和a的关系,从而求出结果.
考试点:圆与圆锥曲线的综合.
知识点:此题考查抛物线的焦点弦公式AB|=x1+x2+p,以及直线与抛物线之间的关系,这也是新课改中新考纲中的要求.