如图,在△ABC中,AB=AC,D是底边BC上一点,E是线段AD上一点且∠BED=2∠CED=∠A.求证:BD=2CD.
问题描述:
如图,在△ABC中,AB=AC,D是底边BC上一点,E是线段AD上一点且∠BED=2∠CED=∠A.求证:BD=2CD.
答
证明:作DO∥AB交AC于O.
则由AB=AC易知OD=OC,且∠DOC=∠BAC=2∠CED,
所以O为△EDC的外心,
取F为△EDC的外接圆与AC的交点,连接DF,则OF=OC=OD,∠ACE=∠ADF.
所以△ACE∽△ADF,即有
=AD AC
. AF AE
再由DO∥AB,∠ADO=∠BAE,
∠AOD=180-∠DOC=180°-∠A=180°-∠BED=∠AEB,
所以△ADO∽△BAE,
即得
=OD BE
=AD AB
=AD AC
.AF AE
故AF=OD=OC=
CF,从而AO=2OC. 1 2
由DO∥AB,得:BD=2CD.