如图,等腰梯形ABCD中,AD∥BC,M、N分别是AD、BC的中点,E、F分别是BM、CM中点.(1)求证:四边形MENF是菱形;(2)若四边形MENF是正方形,请探索等腰梯形ABCD的高和底边BC的数量关系,并证明你的结论.
问题描述:
如图,等腰梯形ABCD中,AD∥BC,M、N分别是AD、BC的中点,E、F分别是BM、CM中点.
(1)求证:四边形MENF是菱形;
(2)若四边形MENF是正方形,请探索等腰梯形ABCD的高和底边BC的数量关系,并证明你的结论.
答
知识点:本题比较复杂,涉及面较广,需要同学们把所学知识系统化,提高自己对所学知识的综合运用运用能力.
(1)证明:∵四边形ABCD为等腰梯形,
∴AB=CD,∠A=∠D.
∵M为AD的中点,
∴AM=DM.(2分)
∴△ABM≌△DCM.(1分)
∴BM=CM.(1分)
∵E、F、N分别是MB、CM、BC的中点,
∴EN、FN分别为△BMC的中位线,
∴EN=
MC,FN=1 2
MB,1 2
且ME=BE=
MB,MF=FC=1 2
MC.1 2
∴EN=FN=FM=EM.
∴四边形ENFM是菱形.(1分)
(2)结论:等腰梯形ABCD的高是底边BC的一半.
理由:连接MN,
∵BM=CM,BN=CN,
∴MN⊥BC.
∴MN是梯形ABCD的高.(2分)
又∵四边形MENF是正方形,
∴∠EMF=90°,
∴△BMC为直角三角形.
又∵N是BC的中点,
∴MN=
BC.(1分)1 2
即等腰梯形ABCD的高是底边BC的一半.
答案解析:(1)根据等腰梯形的中位线的性质求出四边形四边相等即可;
(2)利用等腰梯形的性质和正方形的性质解答.
考试点:等腰梯形的性质;直角三角形斜边上的中线;三角形中位线定理;菱形的判定.
知识点:本题比较复杂,涉及面较广,需要同学们把所学知识系统化,提高自己对所学知识的综合运用运用能力.