如图,在正方体ABCD-A1B1C1D1中,M为CC1的中点,AC交BD于点O,求证:A1O⊥平面MBD.
问题描述:
如图,在正方体ABCD-A1B1C1D1中,M为CC1的中点,AC交BD于点O,求证:A1O⊥平面MBD.
答
知识点:本题考查证明直线和平面垂直的方法,在其中一个平面内找出2条相交直线和另一个平面垂直.
证明:连接MO.∵DB⊥A1A,DB⊥AC,A1A∩AC=A,∴DB⊥平面A1ACC1.又A1O⊂平面A1ACC1,∴A1O⊥DB.在矩形A1ACC1中,tan∠AA1O=22,tan∠MOC=22,∴∠AA1O=∠MOC,则∠A1OA+∠MOC=90°.∴A1O⊥OM.∵OM∩DB=O,∴A1O...
答案解析:利用线面垂直的判定定理证明DB⊥平面A1ACC1 ,证得A1O⊥DB.再用勾股定理证明A1O⊥OM,
这样,A1O就垂直于平面MBD内的两条相交直线,故A1O⊥平面MBD.
考试点:直线与平面垂直的判定.
知识点:本题考查证明直线和平面垂直的方法,在其中一个平面内找出2条相交直线和另一个平面垂直.