已知四边形ABCD的四个外角的度数之比为3:4:5:6,那么这个四边形各内角的度数分别是多少?
问题描述:
已知四边形ABCD的四个外角的度数之比为3:4:5:6,那么这个四边形各内角的度数分别是多少?
答
知识点:本题主要考查了四边形的内角和定理及邻补角的定义.
四边形的内角和为360°,互为邻补角的两个角的和为180°.
答案解析:如果设四边形的四个外角的度数分别为3k,4k,5k,6k.那么根据四边形的外角和为360°,可列出关于k的方程,从而求出四个外角.再由内角与其相邻的内角互为邻补角,得出结果.
考试点:多边形内角与外角.
知识点:本题主要考查了四边形的内角和定理及邻补角的定义.
四边形的内角和为360°,互为邻补角的两个角的和为180°.