已知抛物线y=x方-(k+1)x+k 急 试求k为何值时,抛物线与x轴有一个公共点

问题描述:

已知抛物线y=x方-(k+1)x+k 急 试求k为何值时,抛物线与x轴有一个公共点

(1)由题意可知;当y=0时,方程x2-(k+1)x+k=0,只有一个解,
即:△=(k+1)2-4k=(k-1)2=0,
∴k=1,
即:当k=1时,抛物线与x轴只有一个公共点.
(2)分两种情况进行讨论:
①当∠CAO=∠BCO时.
COAO=BOCO,
即CO2=AO•BO,
由于CO=k,AO•BO=-k,
k2=-k,k(k+1)=0,
∴k=0,k=-1.
当k=0时,C点与B点或A点重合,
因此不合题意舍去.
②当∠ACO=∠BCO时,
∵∠AOC=∠BOC=90°,OC=OC,
因此△AOC≌△BOC,那么y轴就是抛物线的对称轴,
即k+12=0,k=-1.
综上所述,当k=-1时,△AOC与△COB相似.

因为只有一个公共点 所以△=[-(k+1)]^2-4k=k^2-2k+1=(k-1)^2=0 k=1
别忘了采纳呀