已知等差数列an的前n项和为sn,且s13>s6>s14,a2=24①求公差d的取值范围②问数列{sn}是否存在最大项
问题描述:
已知等差数列an的前n项和为sn,且s13>s6>s14,a2=24①求公差d的取值范围②问数列{sn}是否存在最大项
答
1:an=a1+(n-1)d =>a2=a1+d=24 =>a1=24-d;
s13>s6 =>13a1+13*12/2d>6a1+6*5/2d =>d>-3
s6>s14 =>6a1+6*5/2d>14a1+14*13/2d =>d d∈(-3,-48/17);
2: sn=na1+n*(n-1)/2*d=n(24-d)+d/2(n^2-n)=d/2*n^2+(24-d-d/2)n=
d/2((n^2+(48/d-3)n)=d/2(n+24/d-3/2)^2-(24/d-3/2)^2
抛物线的中点为n=3/2-24/d∈(-∞,9.5)∨(10,+∞) 开口向下
所以当n=9时 sn有最大值 sn=d/2*81+(24-3/2d)*9=27d+216;
答
A(n)=A1+(n-1)d.
S(n)=na1+n(n-1)d/2.
A2=A1+d=24
因为S13>S6>S14 即13A1+78d>6A1+15d>14A1+91d
将A1=24-d代入上述不等式,
13(24-d) +78d>6(24-d)+15d>14(24-d)+91d
解得-3