求极限lim(x→1 y→0)(x+y-1)/[根号x-根号下(1-y)]

问题描述:

求极限lim(x→1 y→0)(x+y-1)/[根号x-根号下(1-y)]

分子平方差
=x-(1-y)
=[√x+√(1-y)][√x-√(1-y)]
所以原式=√x+√(1-y)
所以极限=√1+√1=2