将多项式x²+mx+n分解因式时,甲由于看错系数m,分解因式的结果为(x+1)(x-12);乙由于看错系数n,

问题描述:

将多项式x²+mx+n分解因式时,甲由于看错系数m,分解因式的结果为(x+1)(x-12);乙由于看错系数n,
分解因式的结果为(x-2)(x+1),求m,n的值

(x+1)(x-12)=x²-11x-12,甲看错系数m,没有看错系数n,所以n=-12
(x-2)(x+1)=x²-x-2,乙看错系数n,没有看错系数m,所以m=-1