如图,AB=CD,AE⊥BC于E,DF⊥BC于F,CE=BF,连接AD交EF于点O,猜想O为哪些线段的中点?请选择其中一种结论证明.

问题描述:

如图,AB=CD,AE⊥BC于E,DF⊥BC于F,CE=BF,连接AD交EF于点O,猜想O为哪些线段的中点?请选择其中一种结论证明.

点O为AD、EF、BC的中点.证明:连接AF,DE,∵CE=BF,∴CE+EF=BF+EF,∴CF=BE.在△AEB和△DFC中,BE=CF,∠AEB=∠CFD=90°,AB=CD,∴△AEB≌△CFD(SAS),∴AE=DF.∵AE⊥BC,DF⊥BC,∴AE∥DF,∴四边形AEDF为平...