运用两边夹定理证明极限(1/(n^2+1/(n^2+1)+1/(n^2+2)+...+1/(n^2+n)的极限=0

问题描述:

运用两边夹定理证明极限(1/(n^2+1/(n^2+1)+1/(n^2+2)+...+1/(n^2+n)的极限=0

你是不是踢抄错了?
1/n=(1/(n^2)+1/(n^2)+...+1/(n^2))
=