等差数列{an}中,已知a1=13,a2+a5=4,an=33,则n为(  ) A.48 B.49 C.50 D.51

问题描述:

等差数列{an}中,已知a1=

1
3
,a2+a5=4,an=33,则n为(  )
A. 48
B. 49
C. 50
D. 51

设{an}的公差为d,
a1=

1
3
,a2+a5=4,
1
3
+d+
1
3
+4d=4,即
2
3
+5d=4,
解得d=
2
3

∴an=
1
3
+
2
3
(n-1)=
2
3
n-
1
3

令an=33,
2
3
n-
1
3
=33,
解得n=50.
故选C.