如图,在直角坐标系中,点A的坐标为(-2,0),连接OA,将线段OA绕原点O顺时针旋转120°,

问题描述:

如图,在直角坐标系中,点A的坐标为(-2,0),连接OA,将线段OA绕原点O顺时针旋转120°,
如图,在直角坐标系中,点A的坐标为(-2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.

(1)由于OB是由OA顺时针旋转120度而成,所以OB=OA=2,∠BOy=120-90=30度,∠BOx=60度,则根据横纵坐标的定义,可求得Xb=2*cos60 =1,Yb=2*sin60 =√3故B坐标为(1,√3)(2)因为抛物线过原点,所以可设抛物线解析式为y=ax...