已知数列{an}为等比数列,a2=6,a5=162. (1)求数列{an}的通项公式; (2)设Sn是数列{an}的前n项和,证明Sn•Sn+2S2n+1≤1.
问题描述:
已知数列{an}为等比数列,a2=6,a5=162.
(1)求数列{an}的通项公式;
(2)设Sn是数列{an}的前n项和,证明
≤1.
Sn•Sn+2
S
2n+1
答
(1)设等比数列{an}的公比为q,则a2=a1q,a5=a1q4.
依题意,得方程组
a1q=6
a1q4=162
解此方程组,得a1=2,q=3.
故数列{an}的通项公式为an=2•3n-1.
(2)Sn=
=3n−1.2(1−3n) 1−3
=
Sn•Sn+2
S
2n+1
≤
32n+2−(3n+3n+2)+1
32n+2−2•3n+1+1
=1,
32n+2−2
+1
3n•3n+2
32n+2−2•3n+1+1
即
≤1.
Sn•Sn+2
S
2n+1