已知数列{an}为等比数列,a2=6,a5=162. (1)求数列{an}的通项公式; (2)设Sn是数列{an}的前n项和,证明Sn•Sn+2S2n+1≤1.

问题描述:

已知数列{an}为等比数列,a2=6,a5=162.
(1)求数列{an}的通项公式;
(2)设Sn是数列{an}的前n项和,证明

SnSn+2
S 2n+1
≤1.

(1)设等比数列{an}的公比为q,则a2=a1q,a5=a1q4
依题意,得方程组

a1q=6
a1q4=162

解此方程组,得a1=2,q=3.
故数列{an}的通项公式为an=2•3n-1
(2)Sn
2(1−3n)
1−3
3n−1

SnSn+2
S 2n+1
32n+2−(3n+3n+2)+1
32n+2−2•3n+1+1
32n+2−2
3n3n+2
+1
32n+2−2•3n+1+1
=1

SnSn+2
S 2n+1
≤1