如图,△ABC中,∠CAB=∠CBA=45°,CA=CB,点E为BC的中点,CN⊥AE交AB于N,连EN,求证:AE=CN+EN.
问题描述:
如图,△ABC中,∠CAB=∠CBA=45°,CA=CB,点E为BC的中点,CN⊥AE交AB于N,连EN,求证:AE=CN+EN.
答
证明:延长CN至F,使CF=AE,连接BF,
∵∠CAB=∠CBA=45°,
∴∠ACB=90°,
∵CN⊥AE,
∴∠COE=90°,
∴∠CEA+∠1=90°,∠CEA+∠2=90°,
∴∠1=∠2,
在△CAE和△BCF中
AC=CB ∠1=∠2 AE=CF
∴△CAE≌△BCF(SAS),
∴∠ACE=∠CBF=90°,CE=BF,
∵∠CBA=45°,
∴∠FBN=45°=∠EBN,
∵E为BC中点,
∴CE=BE=BF,
在△EBN和△FBN中
BE=BF ∠EBN=∠FBN BN=BN
∴△EBN≌△FBN(SAS),
∴NE=NF,
∴AE=CN+EN.
答案解析:延长CN至F,使CF=AE,连接BF,证△CAE≌△BCF,推出BE=BF,证△EBN≌△FBN,推出NE=NF即可.
考试点:全等三角形的判定与性质.
知识点:本题考查了全等三角形的性质和判定的应用,注意:无论是截长还是补短,构造出全等三角形是解题的关键.