如果a、b、c为互不相等的实数,且满足关系式b2+c2=2a2+16a+14与bc=a2-4a-5,那么a的取值范围是_.

问题描述:

如果a、b、c为互不相等的实数,且满足关系式b2+c2=2a2+16a+14与bc=a2-4a-5,那么a的取值范围是______.

∵b2+c2=2a2+16a+14,bc=a2-4a-5,∴(b+c)2=2a2+16a+14+2(a2-4a-5)=4a2+8a+4=4(a+1)2,即有b+c=±2(a+1).又bc=a2-4a-5,所以b,c可作为一元二次方程x2±2(a+1)x+a2-4a-5=0③的两个不相等实数根,故△=4(...