已知函数f(x+2)为奇函数,且满足f(6-x)=f(x),f(3)=2,则f(2008)+f(2009)的值为( ) A.0 B.2 C.-2 D.2009
问题描述:
已知函数f(x+2)为奇函数,且满足f(6-x)=f(x),f(3)=2,则f(2008)+f(2009)的值为( )
A. 0
B. 2
C. -2
D. 2009
答
由已知得f(-x+2)=-f(x+2),所以f(x)=-f(4-x),
又f(6-x)=f(x),
∴f(6-x)=-f(4-x),
令4-x=t,则f(2+t)=-f(t),f[2+(2+t)]=-f(2+t)=f(t),
∴f(x+4)=f(x),即f(x)是以4为周期的函数;
∴f(2008)+f(2009)=f(0)+f(1),
又f(1)=-f(4-1)=-2,由f(6-x)=f(x)得:f(4)=f(2);
由f(x+4)=f(x)得:f(0)=f(4);①
由f(x)=-f(4-x)得:f(0)=-f(4);②
①+②得:f(0)=0,
∴f(2008)+f(2009)=-2.
故选C.