如图,在△ABC中,∠C=2∠B,D是BC上的一点,且AD⊥AB,点E是BD的中点,连接AE. (1)求证:∠AEC=∠C; (2)求证:BD=2AC.
问题描述:
如图,在△ABC中,∠C=2∠B,D是BC上的一点,且AD⊥AB,点E是BD的中点,连接AE.
(1)求证:∠AEC=∠C;
(2)求证:BD=2AC.
答
(1)证明:∵AD⊥AB,
∴△ABD为直角三角形,
又∵点E是BD的中点,
∴AE=
BD,1 2
又∵BE=
BD,1 2
∴AE=BE,
∴∠B=∠BAE,
又∵∠AEC=∠B+∠BAE,
∴∠AEC=∠B+∠B=2∠B,
又∵∠C=2∠B,
∴∠AEC=∠C.
(2)证明:∵∠AEC=∠C,
∴AE=AC,
又∵AE=
BD,1 2
∴BD=2AE,
∴BD=2AC.