在锐角三角形ABC中,角A.B.C的对边分别为a.b.c,b/a+a/b=6cosC,则tanC/tanA+tanC/tanB的值是——
问题描述:
在锐角三角形ABC中,角A.B.C的对边分别为a.b.c,b/a+a/b=6cosC,则tanC/tanA+tanC/tanB的值是——
答
sinB/sinA+sinA/sinB=6cosC
sin(A+C)/sinA+sin(B+C)/sinB=6cosC
(sinAcosC+cosAsinC)/sinA+(sinBcosC+cosBsinC)/sinB=6cosC
(cosC+sinC/tanA)+(cosC+sinC/tanB)=6cosC
(1+tanC/tanA)+(1+tanC/tanB)=6
tanC/tanA+tanC/tanB=4