在△ABC中,a,b,c分别为角A,B,C的对边,a²-c²=b²,a=3,△ABC的面积为6,求边b、c

问题描述:

在△ABC中,a,b,c分别为角A,B,C的对边,a²-c²=b²,a=3,△ABC的面积为6,求边b、c

∵a²-c²=b²
∴△ABC是以∠A为直角的直角三角形
∵S=1/2bc=6
∴bc=12
∵a=3
∴c²+b²=9
即(b-c)²=-15<0
∴该三角形不成立
还是说你的条件写错了,条件应该是a²+c²=b²
∵a²+c²=b²
∴△ABC是以∠B为直角的直角三角形
∵S=1/2ac=6
∴ac=12
∵a=3
∴c=4
∴b=√a²+c²=5