若AB=BA,AC=CA,证明:A,B,C是同阶矩阵.该如何证明呢?

问题描述:

若AB=BA,AC=CA,证明:A,B,C是同阶矩阵.该如何证明呢?

同样B和A也能做乘法,所以B的列数=A的行数.
设A是m*n矩阵,则B一定是n*m矩阵.
那么AB就是m*m矩阵,BA就是n*n矩阵.
由AB=BA可知m=n.
所以A和B是同阶方阵.