设数列{an}的前n项和为Sn,已知a1=1,a2=6,a3=11,且(5n-8)S(n+1)-(5n+2)Sn=A*n+B,n=1,2,3.,其中AB为常数1)求A,B(2)求证:{an}为等差数列

问题描述:

设数列{an}的前n项和为Sn,已知a1=1,a2=6,a3=11,且(5n-8)S(n+1)-(5n+2)Sn=A*n+B,n=1,2,3.,其中AB为常数
1)求A,B(2)求证:{an}为等差数列

数列 这个模块是近几年才上高中课本的.他对解决一些逻辑问题很有帮助

请问这个是高中数学么?我怎么没学过怎么证明是等差数列的方法阿

由已知得:S1=1,S2=7,S3=18
令n=1,n=2,得:-3*7-7*1=A*1+B,2*18-12*7=2A+B
解得:A=-20,B=-8
(2)证明(5n-8)Sn+1-(5n+2)Sn=-20n-8
则 (5n-3)Sn+2-(5n+7)Sn+1=-20n-28
两式相减,得:(5n-3)Sn+2-(10n-1)Sn+1+(5n+2)Sn=-20
(5n-3)Sn+2-(5n-3)Sn+1-(5n+2)Sn+1+(5n+2)Sn=-20
(5n-3)an+2-(5n+2)an+1=20
则 (5n+2)an+3-(5n+7)an+2=20
两式相减,得:(5n+2)an+3-(10n+4)an+2+(5n+2)an+1=0
an+3-2an+2+an+1=0
又已知a1=1,a2=6,a3=11,
综上,an+2-2an+1+an=0即2an+1=an+an+2
证得{an}为等差数列

昨天刚做过
1)由a1=2 a2=6 a3=11得: S1=a1=1 S2=a1+a2=7 S3=a1+a2+a3= 18
(5n-8)Sn+1-(5n+2)Sn=An+B
当n=1时: -3S2-7S1=A+B 即:-3×7-7=A+B A+B=-28 (1)
当n=2得:2S3-12S2=2A+B 即:18×2-12×7=2A+B 2A+B=-48(2)
由(1)(2)得:A=-20 B=-8
2)证明:(5n-8)Sn+1-(5n+2)Sn=-20n-8 (3)
所以[5(n+1)-8]Sn+2-[5(n+1)+2]Sn+1=-20(n+1)-8(可省)
整理得:(5n-3)Sn+2-(5n+7)Sn+1=-20n-28 (4)
(3)-(4)得:(5n-3)Sn+2-(10n-1)Sn+1+(5n+2)Sn=-20 (5)
所以(5n+2)Sn+3-(10n+9)Sn+2+(5n+7)Sn+1=-20 (6)
(6)-(5)得 :(5n+2)Sn+3-(15n+6)Sn+2+(15n+6)Sn+1-(5n+2)Sn=0
因为 an+1=Sn+1-Sn
所以(5n+2)an+3-(10n+4)an+2+(5n+2)an+1=0
又因为 5n+2不等于0 所以an+3-2an+2+an+1=0
即an+3-an+2=an+2-an+1,n大于等于1
又a3-a2=a2-a1=5
所以{an}为等差数列