设数列{an}的前n项和为Sn,且满足S1=2,Sn+1=3Sn+2(n=1,2,3,…).(Ⅰ)证明数列{an}是等比数列并求通项an;(Ⅱ)求数列{nan}的前n项和Tn.
问题描述:
设数列{an}的前n项和为Sn,且满足S1=2,Sn+1=3Sn+2(n=1,2,3,…).
(Ⅰ)证明数列{an}是等比数列并求通项an;
(Ⅱ)求数列{nan}的前n项和Tn.
答
证明:(Ⅰ)∵Sn+1=3Sn+2,
∴Sn=3Sn-1+2(n≥2)
两式相减得an+1=3an(n≥2)
∵S1=2,Sn+1=3Sn+2
∴a1+a2=3a1+2即a2=6则
=3a2 a1
∴
=3(n≥1)an+1 an
∴数列{an}是首项为2,公比为3的等比数列
∴an=2×3n-1(n=1,2,3,…).
(Ⅱ)∵Tn=1•a1+2•a2+…+nan=1×2+2×2×31+…+n×2×3n-1,
∴3Tn=1×2×3+2×2×32+…+(n-1)×2×3n-1+n×2×3n,(9分)
∴-2Tn=2(1+3+32+…3n-1)-n×2×3n=2×
-n×2×3n=3n(1-2n)-1(11分)
3n−1 3−1
∴Tn=
(13分)(2n−1)3n+1 2
答案解析:(I)由Sn+1=3Sn+2,知Sn=3Sn-1+2(n≥2),两式作差可得an+1=3an(n≥2),然后验证第二项与第一项的比是否满足,从而证明{an}是等比数列,然后根据等比数列的通项公式解之即可;
(II)根据数列{nan}的特点可知利用错位相消法进行求和即可.
考试点:数列的求和;等比数列的通项公式;等比关系的确定.
知识点:本题主要考查了等比数列的通项公式,以及求和,同时考查了利用错位相消法求和以及计算能力,属于中档题.