设Sn为数列{an}的前n项和,Sn=kn^2+n,n属于N*,其中k是常数若{an}为等差数列求r值2.若r=0且a2m,a4m,a8m(m属于N*)成等比数列,求k值
问题描述:
设Sn为数列{an}的前n项和,Sn=kn^2+n,n属于N*,其中k是常数若{an}为等差数列求r值
2.若r=0且a2m,a4m,a8m(m属于N*)成等比数列,求k值
答
等差数列求和通式为: Sn=n[a1+a1+(n-1)]/2=n(a1-1/2)+n^2/2
与Sn=kn^2+n比较,可知:k=1/2, a1-1/2=k =>a1=1
设公差为d, an=1+(n-1)d
a2m/a4m=a4m/a8m => a4 * a4 = a2 * a8
a2=1+d
a4=1+3d
a8=1+7d
所以: (1+3d)(1+3d)=(1+d)(1+7d)
1+6d+9d^2=1+8d+7d^2
2d^2=2d => d=1 或 d=0, 即an是自然数数列或全1数列。
======================
题中没看到有r这个变量
答
等差数列求和通式为:Sn=n[a1+a1+(n-1)]/2=n(a1-1/2)+n^2/2
与Sn=kn^2+n比较,可知:k=1/2,a1-1/2=k =>a1=1
设公差为d,an=1+(n-1)d
a2m/a4m=a4m/a8m => a4 * a4 = a2 * a8a2=1+da4=1+3d
a8=1+7d
所以:(1+3d)(1+3d)=(1+d)(1+7d)
1+6d+9d^2=1+8d+7d^2
2d^2=2d => d=1 或 d=0,所以an是自然数数列或全1数列.