函数y=sin(π2+x)cos(π6-x)的最小正周期为_.

问题描述:

函数y=sin(

π
2
+x)cos(
π
6
-x)的最小正周期为______.

y=sin(

π
2
+x)cos(
π
6
-x)
=cosx(
3
2
cosx+
1
2
snx

=
3
2
cos2x+
1
2
sinxcosx
=
3
4
(1+cos2x)
+
1
4
sin2x

=
1
2
sin(2x+
π
3
)+
3
4

∴T=
2
=π

∴函数y=sin(
π
2
+x)cos(
π
6
-x)的最小正周期为π.
故答案为:π.