函数y=1/根号(12-x-x^2)的递减区间为
问题描述:
函数y=1/根号(12-x-x^2)的递减区间为
答
原函数递减区间即函数g(x)=12-x-x^2(g(x)>0)的递增区间,二次函数g(x)对称轴为x=-1/2,g(x)在(-4,3)区间大于0,所以g(x)递增区间为(-4,-1/2).
函数y=1/根号(12-x-x^2)的递减区间为
原函数递减区间即函数g(x)=12-x-x^2(g(x)>0)的递增区间,二次函数g(x)对称轴为x=-1/2,g(x)在(-4,3)区间大于0,所以g(x)递增区间为(-4,-1/2).