已知椭圆C 过点M (1,3/2)两个焦点为A (-1,0)B (1,0)O 为坐标原点,求椭圆C 的方程
问题描述:
已知椭圆C 过点M (1,3/2)两个焦点为A (-1,0)B (1,0)O 为坐标原点,求椭圆C 的方程
急用
答
点M和B在直线x=1上
MB=3/2
2c=1+1=2
根据勾股定理
MA=√2²+(3/2)²=5/2
所以2a=|MA|+|MB|=5/2+3/2=4
a=2
b²=a²-c²=2²-1²=3
椭圆方程:x²/4+y²/3=1
数形结合,会减少你的计算量