求曲线y=x^2,x=y^2所围成的图形绕y轴旋转所得旋转体的体积
问题描述:
求曲线y=x^2,x=y^2所围成的图形绕y轴旋转所得旋转体的体积
答
S=∫(0,1)[x(1/2)]dx-∫(0,1)[x^2]dx
=[2/3(x^(3/2))-1/3(x^3)](0,1)
=2/3-1/3
=1/3
V=π∫(0,1)[x]dx-π∫(0,1)[x^4]dx
=π[1/2(x^2)-1/5(x^5)](0,1)
=3π/10