设递增等差数列{an}的公差为d,若a1,a2,a3,a4,a5,a6,a7的方差为1,则d=_.

问题描述:

设递增等差数列{an}的公差为d,若a1,a2,a3,a4,a5,a6,a7的方差为1,则d=______.

∵数列{an}是等差数列∴a1+a2+a3+a4+a5+a6+a7=7a4;则a1,a2,a3,a4,a5,a6,a7的平均数为a4,∴a1,a2,a3,a4,a5,a6,a7的方差为17[(a1-a4)2+(a2-a4)2+(a3-a4)2+(a4-a4)2+(a5-a4)2+(a6-a4)2+(a7-...