若x的m次方等于8,x的n次方等于2,则x的2(m-n)次方等于多少

问题描述:

若x的m次方等于8,x的n次方等于2,则x的2(m-n)次方等于多少

x^m=8,m=log(x)8=3log(x)2
x^n=2,n=log(x)2
m-n=2log(x)2=log(x)4
x^[2(m-n)]=x^[2log(x)4]=x^[log(x)4&sup2]=16

x^m=8
x^(2m)=64
x^n=2
x^(2n)=4
x^(2m-2n)=x^(2m)/x^(2n)=64/4=16

x^m=8
x^n=2
x^[2(m-n)]
=[x^(m-n)]^2
=(x^m/x^n)^2
=(8/2)^2
=4^2
16

x^2(m-n)
=x^(2m-2n)
=x^2m/x^2n
=(x^m)^2/(x^n)^2
=8^2/2^2
=64/4
=16

x^2(m-n)=(x^m ÷ x^n )^2 =(8÷2)² =16