某产品生产x单位产品时的总成本函数为C(x)=300+1/12x3−5x2+170x.每单位产品的价格是134元,求使利润最大时的产量.
问题描述:
某产品生产x单位产品时的总成本函数为C(x)=300+
x3−5x2+170x.每单位产品的价格是134元,求使利润最大时的产量. 1 12
答
由题意,生茶x单位产品时,总收益R(x)=134x,
利润为:L(x)=R(x)-C(x)=134x-(300+
x3−5x2+170x)1 12
=-
x3+5x2-36x-300,其定义域为[0,+∞).1 12
L′(x)=−
x2+10x-36=-1 4
(x−36)(x−4),1 4
令L′(x)=0,得x1=4,x2=36,
又∵L(0)=−300,L(4)=−369
,L(36)=996,1 3
且当4<x<36时,L′(x)>0,即L(x)单调递增;当x>36时,L′(x)<0,即L(x)单调递减.∴L(36)=996是L(x)的最大值.
因此工厂生产36单位产品时有最大利润996元.