若函数y=Asin(wx+φ)(A>0,w>0,|φ|
问题描述:
若函数y=Asin(wx+φ)(A>0,w>0,|φ|
答
(1/4)T=5/6-1/3=1/2= =>T=2=2π/w= =>w=π. A=2
y=2sin(πx+φ)
(0,2/3)在图像上,所以sin(π/3+φ)=1==>φ=π/6
f(x)=2sin(πx+π/6)
答
Asin(wπ/3+φ)=0 (1)
Asin(wπ5/6+φ)=0 (2)
Asin(φ)=2/3 (3)
由(1)cos(wπ/3+φ)=1
由(2)cos(wπ5/6+φ)=-1
cos[(wπ5/6+φ)-(wπ/3+φ)]
=cos(wπ/2)=-1
w=2
由(1):sin(wπ/3+φ)=0
φ=π/3
由(3):A=(2/3)/sin(π/3)=4/9 √3
解析式:y=(4/9)*√3sin(2x+π/3)