1.数列{an}是公差不为0的等差数列,且a7,a10,a15是一等比数列{bn}的连续三项,若该等比数列的首项b1=3,求bn.
问题描述:
1.数列{an}是公差不为0的等差数列,且a7,a10,a15是一等比数列{bn}的连续三项,若该等比数列的首项b1=3,求bn.
2.公差不为0的等差数列的第2,3,6项依次构成一等比数列,求该等比数列的公比q.
3.各项都是正数的等比数列{an},公比≠1,a5,a7,a8成等差数列,求公比q.
答
设a1=a,则a7=a+6da10=a+9da15=a+14d所以(a+9d)^2=(a+6d)(a+14d)a^2+18ad+81d^2=a^2+20ad+84d^22ad+3d^2=0d≠02a=-3da=-3d/2q=a15/a10=(a+14d)/(a+9d)=(-3d/2+14d)/-3d/2+9d)=5/3bn=3*(5/3)^(n-1)过程:设等差数列首...