已知:如图,在△ABC中,∠BAC=90°,AD⊥BC于D,E是AB上一点,AF⊥CE于F,AD交CE于G点,求证:∠B=∠CFD.

问题描述:

已知:如图,在△ABC中,∠BAC=90°,AD⊥BC于D,E是AB上一点,AF⊥CE于F,AD交CE于G点,求证:∠B=∠CFD.

证明:∵在Rt△AEC中,AF⊥EC,
∴AC2=CF•CE.
∵在Rt△ABC中,AD⊥BC,
∴AC2=CD•CB.
∴CF•CE=CD•CB.

CF
CB
= 
CD
CE

∵∠DCF=∠ECB,
∴△DCF∽△ECB.
∴∠B=∠CFD.