已知:如图,在△ABC中,∠BAC=90°,AD⊥BC于D,E是AB上一点,AF⊥CE于F,AD交CE于G点,求证:∠B=∠CFD.
问题描述:
已知:如图,在△ABC中,∠BAC=90°,AD⊥BC于D,E是AB上一点,AF⊥CE于F,AD交CE于G点,求证:∠B=∠CFD.
答
证明:∵在Rt△AEC中,AF⊥EC,
∴AC2=CF•CE.
∵在Rt△ABC中,AD⊥BC,
∴AC2=CD•CB.
∴CF•CE=CD•CB.
∴
= CF CB
.CD CE
∵∠DCF=∠ECB,
∴△DCF∽△ECB.
∴∠B=∠CFD.