直线l过抛物线y方=ax(a≠0)的焦点F,斜率为2 ,且和y轴交于点A,若△OAF的面积为4,则抛物线方程为?

问题描述:

直线l过抛物线y方=ax(a≠0)的焦点F,斜率为2 ,且和y轴交于点A,若△OAF的面积为4,则抛物线方程为?
ar005582 那你的答案是什么?

→过焦点的直线方程得到:
y=2(x-a/4)②,y²=ax①
那么A(0,-a/2)→OA=a/2,OF=a/4
→S=4=OA*OF/2=a²/8,→a=±4√2
→y²=±4√2x
好像不难吧,晕,别怕,慢慢来~