如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形. (1)求AD的长; (2)BC是⊙O的切线吗?若是,给出证明;若不是,说
问题描述:
如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.
(1)求AD的长;
(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.
答
(1)连接BD,∵DE是直径∴∠DBE=90°,
∵四边形BCOE为平行四边形,
∴BC∥OE,BC=OE=1,
在Rt△ABD中,C为AD的中点,
∴BC=
AD=1,1 2
则AD=2;
(2)是,理由如下:
如图,连接OB.∵BC∥OD,BC=OD,
∴四边形BCDO为平行四边形,
∵AD为圆O的切线,
∴OD⊥AD,
∴四边形BCDO为矩形,
∴OB⊥BC,
则BC为圆O的切线.