已知:如图,在△ABC中,D为AC边上一点,且AD=DC+CB.过D作AC的垂线交△ABC的外接圆于M,过M作AB的垂线MN,交圆于N.求证:MN为△ABC外接圆的直径.

问题描述:

已知:如图,在△ABC中,D为AC边上一点,且AD=DC+CB.过D作AC的垂线交△ABC的外接圆于M,过M作AB的垂线MN,交圆于N.求证:MN为△ABC外接圆的直径.

证明:延长AC至E,使CE=BC,连接MA、MB、ME、BE,如图,
∵AD=DC+BC,
∴AD=DC+CE=DE,
∵MD⊥AE,
∴MA=ME,∠MAE=∠MEA,
又∵∠MAE=∠MBC,
∴∠MEC=∠MBC,
又∵CE=BC,
∴∠CEB=∠CBE,
∴∠MEA+∠CEB=∠MBC+∠CBE,
即∠MEB=∠MBE,
∴ME=MB,
又∵ME=MA,
∴MA=MB,
又∵MN⊥AB,
∴MN垂直平分AB,
∴MN是圆的直径.