函数f(x) =log (2)[(ax-1)/(x^2-x+2)+2)]在x属于[1,3]上恒有意义则实数a的取值范围.

问题描述:

函数f(x) =log (2)[(ax-1)/(x^2-x+2)+2)]在x属于[1,3]上恒有意义则实数a的取值范围.

(ax-1)/(x^2-x+2)+2>0
(a-1)/2+2>0 a>-3
(3a-1)/8+2>0 a>-5
实数a的取值(-3,无穷)

x∈[1,3],(ax-1)/(x²-x+2)+2>0x²-x+2在R上恒大于0;∴ax-1+2(x²-x+2)>0;a>-2x+2-3/x;2x+3/x≥2√6;当且仅当2x=3/x时有最小值2√6;即x =√6/2∈[1,3];符合∴-2x-3/x≤-2√6;∴a>-2√6+2...