已知13X^2-6XY+Y^2-4x+1=0,求(x+y)^13乘以x^10
问题描述:
已知13X^2-6XY+Y^2-4x+1=0,求(x+y)^13乘以x^10
答
把13X^2-6XY+Y^2-4x+1=0配方,得13X^2-6XY+Y^2-4x+1=09x^2-6xy+y^2+4x^2-4x+1=0(3x-y)^2+(2x-1)^2=0又因为(2x-1)^2>=0,(3x-y)^2>=0,所以只有(2x-1)^2=0,(3x-y)^2=0,即x=1/2y=3/2代入(x+y)^13*x^10=(1/2+3/2)^13*1/2^1...