已知13x^2-6xy+y^2-4x+1=0,求(xy-x^2)^3的值.
问题描述:
已知13x^2-6xy+y^2-4x+1=0,求(xy-x^2)^3的值.
答
13x^2-6xy+y^2-4x+1=0
(4x^2-4x+1)+(9x^2-6xy+y^2)=0
(2x-1)^2+(3x-y)^2)=0
∴2x-1=0,x=1/2
y=3/2
(xy-x^2)^3=(1/2*3/2-1/2^2)^3=1/8
答
13x^2-6xy+y^2-4x+1=0
(9x^2-6xy+y^2)+4x^2-4x+1=0
(3x-y)^2+(2x-1)^2=0
加数均非负,和为0.则均为0
所以有:
3x=y
2x-1=0
x=1/2
y=3/2
(xy-x^2)^3
=(3/4-1/4)^3
=1/8