若一元二次方程ax2+bx+c=0(a≠0)的系数满足4a-2b+c=0,则这个方程必有一个根是( ) A.1 B.-1 C.2 D.-2
问题描述:
若一元二次方程ax2+bx+c=0(a≠0)的系数满足4a-2b+c=0,则这个方程必有一个根是( )
A. 1
B. -1
C. 2
D. -2
答
由题意,一元二次方程ax2+bx+c=0(a≠0)的系数满足4a-2b+c=0,
所以,当x=-2时,一元二次方程ax2+bx+c=0即为:a×(-2)2+b×(-2)+c=0,即4a-2b+c=0,
综上可知,方程必有一根为-2.
故选:D.