在三角形ABC中,角A,B,C所对的边分别为a,b,c,且cosA=1/3

问题描述:

在三角形ABC中,角A,B,C所对的边分别为a,b,c,且cosA=1/3
.(1)求cos²[﹙B+C)/2]+cos2A的值 (2)若a=2,c=3/2,求角C的大小

⑴(B+C)/2=(180°-A)/2=90°-A/2,
∵cosA=2(cosA/2)^2-1,∴cosA/2=√6/3,∴sinA/2=√3/3
cos2A=2(cosA)^2-1=2×(1/3)^2-1=-7/9,
∴原式=(sinA/2)^2+cos2A=1/3-7/9=-4/9.
⑵∵1/2