在三角形ABC中,sinA=tanB,a=b(1+cosA),其中a,b,c是三角形ABC的三条边,且分别是角A,B,C的对边.证明:A=C

问题描述:

在三角形ABC中,sinA=tanB,a=b(1+cosA),其中a,b,c是三角形ABC的三条边,且分别是角A,B,C的对边.证明:A=C

sinA=tanB 切割化弦 得sinAcosB=sinB
又a/sinA=b/sinB得a/b=sinA/sinB,
a=b(1+cosA)得a/b=1+cosA
则sinA/sinB=1+cosA
sinA=sinB+sinBcosA
=sinAcosB+sinBcosA
=sin(A+B)
=sinC
so正弦定理A=C