1/3+1/3×5+1/5×7+1/7×9+…+1/97×99+1/99×101=?怎么计算的?

问题描述:

1/3+1/3×5+1/5×7+1/7×9+…+1/97×99+1/99×101=?怎么计算的?

1/3+1/3×5+1/5×7+1/7×9+…+1/97×99+1/99×101
=1/2[1-1/3]+1/2[1/3-1/5]+...+1/2[1/99-1/101]
=1/2[1-1/3+1/3-1/5+.+1/99-1/101]
=1/2[1-1/101]
=1/2*100/101
=50/101