提个函数连续性的证明题…… 设f(x)在区间[0,2a]上连续且f(0)=f(2a).证明至少存在一提个函数连续性的证明题……设f(x)在区间[0,2a]上连续且f(0)=f(2a).证明至少存在一点ξ∈[0,a],使得f(ξ)=f(ξ+a)

问题描述:

提个函数连续性的证明题…… 设f(x)在区间[0,2a]上连续且f(0)=f(2a).证明至少存在一
提个函数连续性的证明题……
设f(x)在区间[0,2a]上连续且f(0)=f(2a).证明至少存在一点ξ∈[0,a],使得f(ξ)=f(ξ+a)

证明:设g(x)=f(x+a)-f(x),则g(x)是[0,a]上的连续函数,
且g(0)=f(a)-f(0),g(a)=f(2a)-f(a)=f(0)-f(a)
所以g(0)=-g(a),即g(0)g(a)≤0,
由介值定理,知必存在c∈[0,a],使得
g(c)=0,即f(a+c)=f(a)