cos(a-b)=-4/5,cos(a+b)=4/5 a属于(π/2,π)b属于(3π/2,2π),求cos2a

问题描述:

cos(a-b)=-4/5,cos(a+b)=4/5 a属于(π/2,π)b属于(3π/2,2π),求cos2a

∵a∈(π/2,π),b∈(3π/2,2π)
∴a-b∈(-3π/2,-π/2),a+b∈(2π,3π)
∵cos(a-b)<0,cos(a+b)>0
∴sin(a-b)=-3/5或3/5,sin(a+b)=3/5
∴cos2a=cos[(a-b)+(a+b)]
=cos(a-b)cos(a+b)-sin(a-b)sin(a+b)
=(-4/5)(4/5)-(-3/5)(3/5)或=(-4/5)(4/5)-(3/5)(3/5)
=-7/25或=-1

计算机

感觉题目抄错了,是sin(a-b)=-4/5吧 如果是sin(a-b)=-4/5,cos(a+b)=4/5就好写了∵a∈(π/2,π),b∈(3π/2,2π)∴a-b∈(-3π/2,-π/2),a+b∈(2π,3π)∴cos(a-b)<0,sin(a+b)>0∴cos(a-b)=-3/5,sin(a+b)=3/5∴cos2a=c...